Abstract

To meet the requirements of eco-friendly and sustainability in the 21st century, hydrogels based on biopolymer with conductivity and stretchable property have attained increasing attention for strain sensor. However, the as-prepared of hydrogel sensor with excellent mechanical property and high strain sensitivity is still a challenge. In this study, chitin nanofiber (ChNF) reinforced composite hydrogels of PACF are fabricated via a facile one-pot method. The obtained PACF composite hydrogel exhibits good transparency (80.6 % at 800 nm)and excellent mechanical properties (tensile strength, 261.2 kPa; tensile strain as high as 550.3 %). Moreover, the composite hydrogels also demonstrate excellent anti-compression performance. The composite hydrogels own good conductivity (1.20 S/m) and strain sensitivity. Most importantly, the hydrogel can be assembled as a strain/pressure sensor for detecting large-scale and small-scale human motion. Therefore, flexible conductive hydrogel strain sensors will have broad application prospects in artificial intelligence, electronic skin, and personal health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call