Abstract

Currently, with the widespread concerns of smart soft sensors in wearable electronics, human health detection and electronic skin, flexible conductive hydrogels have been extensively studied. However, it remains a great challenge to develop hydrogels that have both satisfactory mechanical performance with stretchable and compressible and high conductive. Herein, based on synergistic dynamic hydrogen and metal coordination bonds, polyvinyl alcohol (PVA)/poly (2-hydroxyethyl methacrylate) (PHEMA) hydrogels doped with polypyrrole decorated cellulose nanofibers (CNFs@PPy) are developed via free radical polymerization. The loading versatile CNFs@PPy highlighted the complex hydrogels super-stretchability (approximately 2600 % elongation) and excellent toughness (2.74 MJ/m3) properties to tensile deformation, strong compressive strength (1.96 MPa), fast temperature responsiveness and outstanding strain sensing capability (GF = 3.13). Moreover, the PHEMA/PVA/CNFs@PPy hydrogels possessed rapid self-healing and powerful adhesive abilities to various interfaces without extra assistance, as well as distinguished fatigue resistance performance. Such advantages make the nanocomposite hydrogel displayed high stability and repeatable to both pressure and strain in a wide range of deformations, enabling a promising candidate in the fields of motion monitoring and healthcare management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.