Abstract

A core/shell stretchable conductive composite of a few-walled carbon nanotube network coated on a poly(m-phenylene isophthalamide) fiber (FWNT/PMIA) was fabricated by a dip-coating method and an annealing process that greatly enhanced interactions between the FWNT network and PMIA core as well as within the FWNT network. The first strain-conductivity test of the as-prepared FWNT/PMIA fiber showed a stretching-induced alignment of nanotubes in the shell during the deformation process and a good conductivity stability with a slight conductivity drop from 109.63 S/cm to 98.74 S/cm (Δσ/σ0 = 10%) at a strain of ∼150% (2.5 times the original length). More importantly, after the first stretching process, the fiber can be recovered with a slight increase in length but a greatly improved conductivity of 167.41 S/cm through an additional annealing treatment. The recovered fiber displays a similarly superb conductivity stability against stretching, with a decrease of only ∼13 S/cm to 154.49 S/cm (Δσ/σ0 = 8%) at a strain of ∼150%. We believe that this conductivity stability came from the formation and maintaining of aligned nanotube structures during the stretching process, which ensures the good tube-tube contacts and the elongation of the FWNT network without losing its conductivity. Such stable conductivity in stretchable fibers will be important for applications in stretchable electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.