Abstract

AbstractKirigami, a traditional paper‐cutting art, is a promising method for creating mechanically robust circuitry for unconventional devices capable of extreme stretchability through structural deformation. In this study, this design approach is expanded upon by introducing Liquid Metal based Elastic Kirigami Electrodes (LM‐eKE) in which kirigami‐patterned soft elastomers are coated with eutectic gallium‐indium (EGaIn) alloy. Overcoming the mechanical and electrical limitations of previous efforts with paper‐like kirigami, the all soft LM‐eKE can be stretched to 820% strain while the electrical resistance only increases by 33%. This is enabled by the fluidic properties of the EGaIn coating, which maintains high electrical conductivity even as the elastic substrate undergoes extreme deformation. Applying the LM‐eKE to human knee joints and fingers, the resistance change during physical activities is under 1.7%, thereby allowing for stable electrical operation of wearable health monitoring devices for tracking electroencephalogram (EEG) signals and other physiological activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.