Abstract

In large-scale applications of portable and wearable electronic devices, high-performance supercapacitors are important energy supply sources. However, since the reliability and stability of supercapacitors are generally destroyed by mechanical deformation and damage during practical applications, the stretchability and self-healability must be exploited for the supercapacitors. Preparing the highly stretchable and self-healable electrodes is still a challenge. Here, we report reduced graphene oxide fiber based springs as electrodes for stretchable and self-healable supercapacitors. The fiber springs (diameters of 295 μm) are thick enough to reconnect the broken electrodes accurately by visual inspection. By wrapping fiber springs with a self-healing polymer outer shell, a stretchable and self-healable supercapacitor is successfully realized. The supercapacitor has 82.4% capacitance retention after a large stretch (100%), and 54.2% capacitance retention after the third healing. This work gave an essential strategy for designing and fabricating stretchable and self-healable supercapacitors in next-generation multifunctional electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.