Abstract

Mechanically stretchable capacitive sensors are extremely promising for applications in continuous health-monitoring. Typical capacitive sensors, made from polymer and thin metal film supporters, lack interfacial adhesion or chemical bonding and have intrinsically low stretchability. Moreover, the performance of most sensors is critically affected by the conformity mismatch at the electrode and dielectric layer interface during high mechanical deformation. Many mechanical sensors have limited practical applications due to significant hysteresis, low sensitivity, and lack of reproducibility. Herein, we develop a textile-based capacitive mechanical sensor by utilizing titanium carbide-based MXene (Ti3C2Tx) to fabricate conductive textiles and a composite film of polystyrene (PS) fibers and ecoflex silicone as a dielectric layer. Ti3C2Tx showed strong bonding with the fabric owing to its rich surface chemistry, hydrophilicity, and large surface area. The MXene-coated fabric and integration of the composite film make the sensor mechanically stretchable, thus improving its sensitivity, response time, and stability. The sensor showed negligible hysteresis (∼0.2) and demonstrated a high sensitivity of 1.11 when stretched to 100 % elongation and 13.02 kPa−1 when squeezed at a pressureof 200 kPa and excellent cyclic stability (1000 cycles). The sensor was further utilized for the detection of human motion when specificbody movements were performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.