Abstract
Smart wearable technology has been more and more widely used in monitoring and prewarning of human health and safety, while flexible yarn-based strain sensors have attracted extensive research interest due to their ability to withstand greater external strain and their significant application potential in real-time monitoring of human motion and health signals. Although several strain sensors based on yarn structures have been reported, it remains challenging to strike a balance between high sensitivity and wide strain ranges. At the same time, visual signal sensing is expected to be used in strain sensors thanks to its intuitiveness. In this work, thermoplastic polyurethane (TPU) and tetraphenylethylene (TPE) were wet-spun to fabricate flexible fluorescent fibers used as the substrate of the sensor, followed by the drop addition of polydimethylsiloxane (PDMS) beads and curing to produce a heterogeneous structure, which were further twisted into a plied yarn. Finally, a visualizable flexible yarn strain sensor based on solidified liquid beads and crack structure was obtained by loading polydopamine (PDA) and polypyrrole (PPy) in situ. The sensor exhibited high sensitivity (the GF value was 58.9 at the strain range of 143-184%), a wide working strain range (0-184%), a low monitoring limit (<0.1%), a fast response (58.82 ms), reliable responses at different frequencies, and excellent cycle durability (over 2000 cycles). At the same time, the yarn strain sensor also had excellent photothermal characteristics and a fluorescence crack visualization effect. These attractive advantages enabled yarn strain sensors to accurately monitor various human activities, showing great application potential in health monitoring, personalized medical diagnosis, and other aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.