Abstract

AbstractWith the emerging demand of implantable microelectronics, it essentially requires the fully integrated and reliable power supplies. The study reports a stretchable and flexible electrospinning‐based glucose/O2 biofuel cell with glucose oxidase bioanode, Pt/C cathode and thermoplastic polyurethane substrate, which is capable for adapting to the various stresses and strains caused by individual movement. The rigid benzene rings and elastic chain segments of thermoplastic polyurethane ensure its superior tensile property. Furthermore, the stable covalent connections between the activated carbon nanotubes (CNTs‐COOH) and glucose oxidase inside 3D thermoplastic polyurethane network are established by amide reaction to ensure the rapid direct electron transfer of bioanode and stable power output of device in flexible environments. The biofuel cell exhibits an open circuit voltage of 0.575 V, and high‐power density of 57 µW cm−2 in 5 mM glucose. Moreover, the power‐generation properties of implantable biofuel cell keep steady, and its power density exhibits limited fluctuations on the dorsum of rat when bending, stretching, and twisting in 28 days. There is no obvious local inflammation or systemic abnormalities in rats. It satisfies the impressive biocompatible requirement, demonstrating the promising potential of electrospinning‐based biofuel cell as a robust self‐sustained power source for implantable electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.