Abstract

The unsatisfactory cycling stability of Zn anode stemming from dendritic growth and side reactions has slowed the rapid development of aqueous Zn-ion batteries (AZIBs). Constructing a three-dimensional (3D) artificial interphase layer is an appealing solution since it could dictate Zn deposition at the interface. Here, the in situ growth of a Cu-based metal–organic framework (Cu-MOF) over commercial Zn foil followed by subsequent selenization endows selenized Cu-MOF (SCM) with a stabilized Zn anode. The 3D SCM coating could homogenize the electric field and function as a reservoir to tolerate the deposited Zn. As a result, both rampant dendritic propagation and the notorious side reactions are concurrently inhibited. The SCM@Zn symmetric cell displays an elongated cyclic life for over 500 h at 2.0 mA cm–2. The assembled AZIB full cell readily realizes high electrochemical reversibility under different current densities. Our investigation offers insights into the design of a protective layer for high-performance Zn anodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.