Abstract
Silver nanobelts are demonstrated here to undergo inter-particle joining at relatively low temperatures of less than 180 °C. For surface-coated networks of nanobelts this joining reduced the network sheet resistance by 95%. The joining mechanism appears to be non-diffusional oriented attachment, caused by the thermal reactivation of the halted oriented attachment mechanism that occurred originally at room temperature during the rapid nanobelt synthesis. This self-assembly mechanism was explored by in situ electrical and calorimetric experiments, and supported by electron microscopy. Unlike pentagonal silver nanowires, silver nanobelts do not rely on diffusional instability to achieve workably low joining temperatures. The oriented attachment displayed by nanobelts represents a new approach to achieving valuable reductions in network resistance, disentangled from the instability and diffusion-driven failure by nanoparticle degradation displayed by competing silver nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.