Abstract

As an outstanding less-Pb candidate, doping Mn2+ ions into perovskite quantum dots (QDs) has received significant interest in the application of light-emitting diodes (LEDs). However, their further applications are impeded by poor chemical instability. Here, the silica-wrapped Mn-doped CsPbCl3 QDs are fabricated via hydrolyzing (3-aminopropyl) triethoxysilane with improved operational stability. Also, the photoluminescence quantum yield as high as 55.4% for the CsPbMnCl3@SiO2 composite is achieved. Silica wrapping can protect the perovskite QDs from damage by temperature and humidity as well as anion exchange. Furthermore, white LED devices are prepared by employing the mixture of green CsPbBr3 QDs and orange-red CsPbMnCl3@SiO2 composites. The as-obtained white LED device operated at a forward current of 20 mA exhibits bright natural light with a high luminous efficiency of 77.59 lm/W, and the corresponding color rendering index of 82 and color temperature (CCT) of 3950 K are obtained. Additionally, the electroluminescence spectrum shows nearly no variation after 24 h operation. This work will promote the Mn-doped CsPbCl3 QDs material to the practical application in solid-state LEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.