Abstract

In this manuscript, we have synthesized a stable fuel cell catalyst composed of presynthesized Pt nanocrystals (<4 nm) on graphitic mesoporous carbon. The catalyst shows negligible loss in mass activity and active surface area after an accelerated durability test (1000 cycles, 0.5−1.2 V), whereas the commercial Pt on amorphous carbon loses ∼70% in activity and area. Strong Pt−graphite interactions, resulting from metal/support orbital overlap (π-backbonding) coupled with partial charge transfer, as shown by XPS, and a low coverage of weakly bound ligands on the Pt surface facilitated high dispersion and loadings up to 20 wt %. The high oxidation resistance of the graphitized carbon, along with the strong Pt−C interactions, helped to maintain electrical contact between the metal and carbon while mitigating Pt dissolution, ripening, and coalescence. The ability to disperse well-defined metal nanoparticles onto graphitic mesoporous carbon offers the potential for creating highly stable and active catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.