Abstract

The catalytic conversions of biomass and its derivatives into fuels and chemicals require active and stable catalysts. Non-noble-metal catalysts typically suffer from deactivation due to the leaching and sintering of the metal species in liquid-phase reactions. In this work, we report a facile synthesis of porous-carbon-coated Ni catalysts supported on carbon nanotubes (CNFx@Ni@CNTs) by atomic layer deposition for the reductive amination of levulinic acid (LA) with amines to pyrrolidones. Under the protection of porous carbon with a moderate thickness, the optimized CNF30@Ni@CNTs catalyst showed a 99% yield of pyrrolidones and recyclability of up to 20 runs without the leaching and sintering of Ni nanoparticles. On the basis of verification experiments and density functional theory calculations, we determined that our Ni-catalyzed reductive amination of LA with amines underwent an unconventional pathway via amides as the first intermediate, followed by tandem cyclization, intramolecular dehydration, and h...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call