Abstract
This study presents on ZnO/TiO2 supported on PVC (ZnO/TiO2@PVC) in the photocatalytic removal of paraquat dichloride. The ZnO/TiO2@PVC was characterized using XRD, FESEM-EDX, FTIR, and AFM. Findings indicated that ZnO/TiO2@PVC allowed degradation of paraquat dichloride under UV irradiation by the rate of up to 73%. XRD pattern indicated the presence of both TiO2(anatase) and ZnO (zincite) crystalline as well as PVC amorphous structures. FESEM and AFM results revealed the observed shape and surface of TiO2 interconnected nanowires with ZnO nanorods uniformly distributed according to EDX mapping. The reduced surface roughness was also shown in the supported photocatalyst. FTIR analysis clearly demonstrate the combined spectra of immobilised ZnO/TiO2 powder catalyst onto the PVC in the composite. Kinetic study of the degradation process was performed according to pseudo-first-order and the influence of ZnO/TiO2 coating onto PVC polymer and initial paraquat concentration were investigated on the treatment performance. Under optimized condition (pH = 7, PQ =20 mg/L and catalyst coating =15%), the stability and reusability of the supported catalyst was also evaluated over ten sequential treatment runs, and the catalyst maintain high reactivity. High recyclability of the ZnO/TiO2@PVC composites as catalyst in photodegradation processes are also reported in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Malaysian Journal of Fundamental and Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.