Abstract
AbstractMaterials that emit in the near‐infrared (NIR) region are at the forefront of both research and industry, mainly due to their wide applications in national security, nondestructive bioimaging, long‐wave communications, and photothermal conversion for medical care. As a key member of the luminescent materials family, metal halide perovskites have been intensively demonstrated to emit light in ultraviolet and visible regions. However, NIR‐emitting perovskites suffer from severe limitations, such as low photoluminescence quantum yield and poor chemical/optical stability, thereby preventing them from practical applications. Herein, the synthesis and growth of Cs2MoCl6 and Cs2WCl6 perovskite single crystals with ultrahigh chemical and optical resistance to heat, moisture, polar solvents, and high‐energy radiation is reported. Upon ultraviolet or blue excitation, these lead‐free single crystals emit light beyond 1100 nm, the longest wavelength ever reported for perovskite hosts. Mechanistic studies indicate that self‐trapped excitons are responsible for the NIR emission. The authors fabricate optoelectronic devices using these single crystals and demonstrate their broad applications in noninvasive palm vein imaging, night vision, and nondestructive food analysis. These results may stimulate research in the development of high‐efficiency NIR perovskite phosphors for fast, accurate biometric identification and food inspection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.