Abstract
Herein, we report a binder-free, stable, and high-performance hydrazine chemical sensor based on vertically aligned zinc oxide nanorods (ZnO NRs), grown on silver (Ag) electrode via low-temperature solution route. The morphological characterizations showed that the NRs were grown vertically in high density and possess good crystallinity. The as-fabricated hydrazine chemical sensors showed an excellent sensitivity of 105.5 μAμM−1cm−2, a linear range up to 98.6μM, and low detection limit of 0.005μM. It also showed better long-term stability, good reproducibility and selectivity. Furthermore, the fabricated electrodes were evaluated for hydrazine detection in water samples. We found the approach of directly growing nanostructures as a key factor for enhanced sensing performance of our electrodes, which effectively transfers electron from ZnO NRs to conductive Ag electrode. Thus it holds future prospective applications as binder-free, cost-effective, and stable sensing devices fabrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.