Abstract

Abstract Poly(chloro-p-xylene), or Parylene-C, is a polymeric insulating material that has good physical and chemical properties, such as a high dielectric strength, a pin-free surface, and good mechanical/chemical stability, but is difficult to apply to top-contact-structured OFETs since its hydrophobic and very rough surfaces hinder the growth of organic semiconductor crystals and promote the formation of interface traps. Herein, we applied a blend of PS and TIPS-PEN dissolved in 1,2,3,4 tetrahydronaphthalene to overcome these limitations of Parylene-C. To confirm the influence of this system, we analyzed the morphologies of crystals grown on Parylene-C surfaces modified by various organic and polymer materials, including methacryloxypropyltrimethoxysilane, hexamethyldisilazane, and dimethylchlorosilane-terminated polystyrene. Our investigation showed the ability of the PS:TIPS-PEN blend system to be used to overcome the above-described limitations of Parylene-C, and to manufacture top-contact OFETs displaying stable operation under gate-bias stress. Notably, we applied Parylene-C and this blend system in practical flexible OFETs that displayed highly stable properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call