Abstract

Ag-Eu3+ co-doped fluoroborate glass phosphors doped with various Eu3+-concentrations were prepared by a melt-quenching technique. The luminescent properties of these glass phosphors were characterized by excitation and emission spectra. Broad excitation and emission bands located, respectively, at 300-450 nm and 390-700 nm originating from silver aggregates were observed. Strong red emissions were detected under 404 nm violet light-emitting diode (LED) excitation for those Ag-Eu3+ co-doped samples. It was found that these red emissions of Eu3+ well compensated the deficiency of the red spectral components in glasses containing Ag aggregates. In addition, it was confirmed that stable white light could be achieved from the combination of a specific Ag-Eu3+ co-doped fluoroborate glass phosphor and LEDs with different output wavelengths. By adjusting the luminescence intensity ratio of the glass phosphor to the 404 nm violet LED, tunable emitting color was realized, and the studied glass phosphors showed excellent emitting color stability toward LED drive currents. Our results demonstrated that this kind of easy fabrication, low-cost, and highly stable Ag-Eu3+ co-doped fluoroborate glass phosphors had potential application in white LED.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call