Abstract

AbstractThe uncontrollable growth of dendrites, infinite volume changes, low Coulombic efficiencies, and poor charging/discharging rates in lithium metal anodes have seriously hampered the further development of lithium metal batteries. Trapping lithium (Li) into rationally designed three‐dimensional (3D) structured Li metal anodes in order to construct a 3D‐Li framework is an effective approach to suppress the growth of Li dendrites. However, material inconsistencies and high costs still seriously limit practical applications. In this study, we describe the use of commercial low‐cost graphite fiber (GF) as a suitable conformal scaffold for preparing a lithiophilic SnO2@GF material using facile infiltration method. The lithiophilic 3D porous conductive framework allows homogeneous Li deposition on the surface of a structured electrode and accommodates the volume change during Li plating/stripping, leading to a significant boost in both the charging/discharging rates and cycling stability. This study highlights the significance of interface‐related science and engineering in designing high‐performance Li metal anodes, but also highlights the need for greater dedication to the construction of highly stable lithium anodes and high‐energy density Li metal batteries in a low‐cost manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.