Abstract

Oligonucleotide-stabilized silver nanoclusters (AgNCs) show promising applications in bioimaging and bio-/chemo-sensing. However, their unsatisfactory photostability limits their practical applications. In this work, fluorescent AgNCs were synthesized in situ in a DNA hydrogel, consisting of cross-linked enzymatically amplified polymeric DNAs with cytosine-rich sequences in the presence of Ag+. The fluorescence property of the resultant AgNCs was optimized by a rational design of the DNA sequences to cover a broad spectrum with comparable green and red emissions. Under the protection of the DNA hydrogel, the AgNCs showed significantly improved photostability in an ambient oxygen environment, as well as low cytotoxicity even at a high concentration. Therefore, these properties show the rolling-circle-amplification-stabilized AgNCs to be a promising possible fluorescent probe for the detection of reactive oxygen/nitrogen species (ROS/RNS) in live cells because red-emitting species are susceptible to oxidation and consequently convert to green-emitting species. Finally, the as-prepared AgNCs were demonstrated to be a sensitive and specific probe for cellular imaging and the monitoring of ROS/RNS levels, which broadens the applications of AgNCs and provides a new tool for related biological investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.