Abstract

Tandem organic light-emitting diodes (OLEDs) have been studied to improve the long-term stability of OLEDs for 10years. The key element in a tandem OLEDs is the charge generation layer (CGL), which provides electrons and holes to the adjacent sub-OLED units. Among different types of CGLs, n-doped electron transporting layer (ETL)/transition metal oxide (TMO)/hole transporting layer (HTL) has been intensively studied. Past studies indicate that this kind of CGL can achieve the desired efficiency enhancement, however, its long-term stability was reported not good and sometime even poor than a single OLED. This issue was not well addressed over the past 10years. Here, for the first time, we found that this is caused by the unwanted diffusion of TMO into the underlying n-doped ETL layer and can be well resolved by introducing an additional diffusion suppressing layer (DSL) between them. Our finding will fully release the potential of TMO-based CGL in tandem OLEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call