Abstract

AbstractTo solve critical issues related to device stability and performance of perovskite solar cells (PSCs), FA0.026MA0.974PbI3−yCly‐Cu:NiO (formamidinium methylammonium (FAMA)‐perovskite‐Cu:NiO) and Al2O3/Cu:NiO composites are developed and utilized for fabrication of highly stable and efficient PSCs through fully‐ambient‐air processes. The FAMA‐perovskite‐Cu:NiO composite crystals prepared without using any antisolvents not only improve the perovskite film quality with large‐size crystals and less grain boundaries but also tailor optical and electronic properties and suppress charge recombination with reduction of trap density. A champion device based on the composites as light absorber and Al2O3/Cu:NiO interfacial layer between electron transport layer and active layer yields power conversion efficiency (PCE) of 20.67% with VOC of 1.047 V, JSC of 24.51 mA cm−2, and fill factor of 80.54%. More importantly, such composite‐based PSCs without encapsulation show significant enhancement in long‐term air‐stability, thermal‐ and photostability with retaining 97% of PCE over 240 d under ambient conditions (25–30 °C, 45–55% humidity).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.