Abstract

Zero-dimensional (0D) crystal structure perovskite NCs have reemerged as promising materials owing to their superior long-term stability; however, their poor conductivity leads to the inferior electrical performances and critically restricts the optoelectronic application of 0D perovskite materials. Herien, the alloyed 0D crystal structure Cs2ZnxPb1-xCl4 nanorods (NRs) have been synthesized by the modified hot-injection method, which emits bright blue-violet light at 408 nm, and the optimized photoluminescence quantum yield (PLQY) reaches 26%. The Cs2Zn0.88Pb0.12Cl4 NRs display more excellent air stability and an order of magnitude higher conductivity than CsPbCl3 nanocube films. In addition, we dope Mn2+ ions into the Cs2Zn0.88Pb0.12Cl4 NRs, which accomplished the optimized PLQY of 40.3% and polarized emission with r = 0.19. The light-emitting diodes (LEDs) based on Mn2+ ion doped Cs2Zn0.88Pb0.12Cl4 NRs exhibit a chromaticity coordinate (CIE) of (0.36, 0.33), an EQE of 0.3%, and a maximum luminance of 98 cd m-2. This work has enriched ideas for the production of white light perovskite LEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.