Abstract

Nanostructured Ni-incorporated mesoporous alumina (MAl) materials with different Ni loading (7, 10 and 15 wt %) were prepared by a template assisted hydrothermal synthesis method and tested as catalysts for CO2 reforming of methane under different conditions (nickel loading, gas hourly space velocity (GHSV), reaction temperature and time-on-stream (TOS)). The most active catalyst tested (Ni(10 wt%)-MAl) showed a very high stability over 200 h compared to a Ni(10 wt%)/γ-Al2O3 prepared using a co-precipitation method which had a significant loss in activity after only ∼4 h of testing. The high stability of the Ni-MAl materials prepared by the template assisted method was due to the Ni nanoparticles in these catalysts being highly stable towards migration/sintering under the reaction conditions used (800 °C, 52,000 mL h−1 g−1). The low susceptibility of the Ni nanoparticles in these catalysts to migration/sintering was most likely due to a strong Ni-support interaction and/or active metal particles being confined to the mesoporous channels of the support. The Ni-MAl catalysts also had significantly lower amounts of carbon deposited compared to the catalyst prepared using the co-precipitation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.