Abstract

A novel one-step direct synthesis of nickel embedded in an ordered mesoporous carbon catalyst (NiOMC) is done in a basic medium of nonaqueous solution by a solvent evaporation-induced self-assembly process. The NiOMC sample is characterized by a variety of analytical and spectroscopy techniques, e.g., N2 adsorption/desorption isotherm measurement, X-ray diffraction (XRD), transmission electron microscopy (TEM) and temperature-programed reduction (TPR). In this study, the NiOMC catalyst is found to exhibit superior catalytic activity for the steam reforming of ethanol (SRE), showing high hydrogen selectivity and durability. Ethanol can be completely converted at 350°C over the NiOMC catalyst. Also, the durability of the NiOMC catalyst on the SRE reaction exceeds 100h at 450°C, with SH2 approaching 65% and SCO of less than 1%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call