Abstract

We propose a general technique to produce cold spin-polarized molecules in the electronic states of Σ symmetry, in which rotationally excited levels are first populated by coherent microwave excitation, and then allowed to spin flip and relax via collisional quenching, which populates a single final spin state. The steady-state spin polarization is maximized in the regime, where collisional slip-flipping transitions in the ground rotational manifold (N=0) are suppressed by a factor of ≥10 compared to those in the first rotationally excited manifold (N=1), as generally expected for Σ-state molecules at temperatures below the rotational spacing between the N=0 and N=1 manifolds. We theoretically demonstrate the high selectivity of the technique for ^{13}C^{16}O molecules immersed in a cold buffer gas of helium atoms, achieving a high degree (≥95%) of nuclear spin polarization at 1K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.