Abstract

β-Glucuronidase (GLU) is an important biomarker for primary cancers and intestinal metabolism of drugs or endogenous substances; however, an effective optical probe for near-infrared (NIR) monitoring in vivo is still lacking. Herein, we design an enzyme-activated off-on NIR fluorescent probe, HC-glu, based on a hemicyanine keleton, which is conjugated with a d-glucuronic acid residue via a glycosidic bond, for the fluorescent quantification and trapping of endogenous GLU activity in vitro and in vivo. The newly developed NIR probe exhibited prominent features including prominent selectivity, high sensitivity, and ultrahigh imaging resolution. It has been successfully used to detect and image endogenous GLU in various hepatoma carcinoma cells, tumor tissues, and tumor-bearing mouse models, for cancer diagnosis and therapy. Moreover, it could detect the in vivo activity of GLU in the intestinal tracts of animals including mice and zebrafish, where GLU performs a vital biological function and is mainly distributed. It could also evaluate real intestinal distribution and real-time variations of GLU in development and growth, all of which are very helpful to guide rational drug use in the clinic. Our results fully demonstrated that HC-glu may serve as a promising tool for evaluating the biological function and process of GLU in living systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.