Abstract

We investigated polymer-binding 7-mer peptides that recognize differences in the polymer stereoregularity of all-purpose poly(methyl methacrylate)s (PMMAs) with simple chemical structures. Quantitative surface plasmon resonance measurements detected association/dissociation processes of the peptides against PMMA film surfaces, followed by an estimation of kinetic parameters such as association/dissociation rate constants and affinity constants. Greater association and smaller dissociation constants of the peptides were observed against a target isotactic PMMA than the structurally similar reference syndiotactic PMMA, followed by greater affinity constants against the target. A c02 peptide composed of the Glu-Leu-Trp-Arg-Pro-Thr-Arg sequence showed the greatest affinity constant (2.8x10(5) M(-1)) for the target, which was 41-fold greater than that for the reference, thus demonstrating extremely high peptide specificities. The substitution of each amino acid of the c02 peptide to Ala (Ala scanning) clearly revealed the essential amino acids for the affinity constants; the essential order was Pro5>>Thr6>Arg7>Glu1>Arg4. In fact, the shorter 4-mer peptide composed of the C-terminal Arg-Pro-Thr-Arg sequence of the c02 peptide still demonstrated strong target specificity, although the N-terminal 4-mer peptide Glu-Leu-Trp-Arg completely lost its specificity. The possible conformations modeled with Molecular Mechanics supported the significance of the Arg-Pro-Thr-Arg sequence. The thermodynamic parameters of the c02 peptide suggested an induced fit mechanism for the specific affinity. The present affinity analyses of polymer-recognizing peptides revealed significant and general information that was essential for potential applications in peptidyl nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call