Abstract
Kernel spectral clustering is a model-based spectral clustering method formulated in a primal-dual framework. It has a powerful out-of-sample extension property and a model selection procedure based on the balanced line fit criterion. This paper is an improvement of a previous work which sparsified the kernel spectral clustering method using the line structure of the data projections in the eigenspace. However, the previous method works only in the case of well formed and well separated clusters as in other cases the line structure is lost. In this paper, we propose two highly sparse extensions of kernel spectral clustering that can overcome these limitations. For the selection of the reduced set we use the concept of angles between the data projections in the eigenspace. We show the effectiveness and the amount of sparsity obtained by the proposed methods for several synthetic and real world datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.