Abstract

The unsteadiness of a shock-wave/turbulent-boundary-layer interaction induced by an axisymmetric step (cylinder/$90^{\circ }$-disk) is investigated experimentally at Mach 3.9. A large-scale separation of the order of previously reported incoming turbulent superstructures is induced ahead of the step ${\sim}30\unicode[STIX]{x1D6FF}_{o}$ and followed by a downstream separation of ${\sim}10\unicode[STIX]{x1D6FF}_{o}$ behind it, where $\unicode[STIX]{x1D6FF}_{o}$ is the incoming boundary-layer thickness. Narrowband high-frequency instabilities shift gradually to more moderate frequencies along the upstream separation region exhibiting a strong predominance of shear-induced disturbance levels – arising between the outer high-speed flow and the subsonic bubble. Through spectral/time-resolved analysis of this high Reynolds number and large-scale separation, results offer new insights into the shear layer’s inception and evolution (convection, growth and instability) and its influence on interaction unsteadiness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.