Abstract

Currently, significant progress is being made in the prevention, treatment and prognosis of many types of cancer, using biological markers to assess current physiological processes in the body, including risk assessment, differential diagnosis, screening, treatment determination and monitoring of disease progression. The interaction of protein coding gene CD44 with the corresponding ligands promotes the processes of invasion and migration in metastases. The study of new and rapid methods for the quantitative determination of the CD44 protein is essential for timely diagnosis and therapy. Current methods for detecting this protein use labeled assay reagents and are time consuming. In this paper, a fiber-optic biosensor with a spherical tip coated with a thin layer of zinc oxide (ZnO) with a thickness of 100 nm, deposited using a low-cost sol-gel method, is developed to measure the CD44 protein in the range from 100 aM to 100 nM. This sensor is easy to manufacture, has a good response to the protein change with detection limit of 0.8 fM, and has high sensitivity to the changes in the refractive index (RI) of the environment. In addition, this work demonstrates the possibility of achieving sensor regeneration without damage to the functionalized surface. The sensitivity of the obtained sensor was tested in relation to the concentration of the control protein, as well as without antibodies-CD44.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.