Abstract
A highly sensitive temperature sensor is proposed and demonstrated based on a UV-curable polymer-infiltrated Mach-Zehnder interferometer (MZI) created in a graded index fiber (GIF). The device was constructed by splicing a half-pitch GIF between two single-mode fibers and creating an inner air cavity in one lateral side of the GIF core by means of femtosecond laser micromachining. The air cavity and the residual GIF core functioned as two interference arms of the MZI. Moreover, the GIF was used as a miniature in-fiber collimator to reduce insertion loss of the air cavity. Experimental results show such an MZI device has a high refractive index (RI) sensitivity of 24611.54nm/RIU (RI=1.545-1.565). Subsequently, thermo-sensitive polymer liquid was infiltrated into the air cavity, then cured with UV illumination, and annealed at 50°C for 12h. The infiltrated MZI exhibits a high temperature sensitivity of -13.27 nm/°C. In addition, this MZI also has excellent thermal stability and repeatability, compact structure, low insertion loss, and high fringe visibility. As such, the proposed MZI could be developed for high-accuracy temperature measurements in many areas such as biomedical or oceanographic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.