Abstract

A surface-enhanced Raman scattering (SERS)-based sensor was developed for the label-free real-time gas phase detection of dimethyl methylphosphonate (DMMP); a surrogate molecule of the G-series nerve agents which are of particular concern due to its extreme toxicity, persistence and previous deployment. The SERS platform was designed using simple elements (Au nano-particles) coated with a citrate layer, and a self-assembly procedure that yields near- optimum distances among the nanoparticles. The citrate coating acts as an effective trap of the target molecules on the immediate vicinity of the Au nanoparticle surface under ambient conditions by reversible hydrogen bonding type interactions. For the first time, we have been able to detect sub-ppm concentrations of DMMP in gas phase (130 parts-per-billion), as might be found on potential emergency scenarios. The high sensitivity, simple preparation and reusability of the SERS platforms developed in this work open up the way for immediate detection of chemical warfare agents in realistic scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.