Abstract

The use of surface-enhanced Raman scattering (SERS) spectroscopy for the detection of substances in non-volatile systems, such as edible oil and biological cells, is an important issue in the fields of food safety and biomedicine. However, traditional dry-state SERS detection with planar SERS substrates is not suitable for highly sensitive and rapid SERS detection in non-volatile liquid-phase systems. In this paper, we take contaminant in edible oil as an example and propose an in situ SERS detection method for non-volatile complex liquid-phase systems with high-performance optical fiber SERS probes. Au-nanorod clusters are successfully prepared on optical fiber facet by a laboratory-developed laser-induced dynamic dip-coating method, and relatively high detection sensitivity (LOD of 2.4 × 10-6 mol/L for Sudan red and 3.6 × 10-7 mol/L for thiram in sunflower oil) and good reproducibility (RSD less than 10%) are achieved with a portable Raman spectrometer and short spectral integration time of 10 s even in complex edible oil systems. Additionally, the recovery rate experiment indicates the reliability and capability of this method for quantitative detection applications. This work provides a new insight for highly sensitive and rapid SERS detection in non-volatile liquid-phase systems with optical fiber SERS probes and may find important practical applications in food safety and biomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call