Abstract
Near-field communication (NFC) labeling technology has been recently used to endow smartphones with nonline-of-sight sensing functions to improve the environment, human health, and quality of life. For applications in detecting food spoilage, the development of a sensor with high enough sensitivity to act as a switch for an NFC tag remains a challenge. In this Letter, we developed a nanostructured conductive polymer-based gas sensor with high sensitivity of Δ R/ R0 = 225% toward 5 ppm ammonia NH3 and unprecedented sensitivities of 46% and 17% toward 5 ppm putrescine and cadaverine, respectively. The gas sensor plays a critical role as a sensitive switch in the circuit of the NFC tag and enables a smartphone to readout meat spoilage when the concentration of biogenic amines is over a preset threshold. We envision the broad potential use of such intelligent sensing for food status monitoring applications in daily life, storage and supply chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.