Abstract

Flexible electronics have demonstrated various strategies to enhance the sensory ability for tactile perception and wearable physiological monitoring. Fibrous microstructures have attracted much interest because of their excellent mechanical properties and fabricability. Herein, a structurally robust fibrous mat was first fabricated by electrospinning, followed by a sequential process of functionalization utilizing ultrasonication treatment and in situ polymerization growth. Electrospun polyurethane (PU) microfibers were anchored with multi-walled carbon nanotubes (MWCNTs) to form conductive paths along each fiber by a scalable ultrasonic cavitation treatment in an MWCNT suspension. After, a layer of poly(3,4-ethylene dioxythiophene) (PEDOT) was grown on the surface of PU fibers decorated with MWCNTs to enhance the conductive conjunctions of MWCNTs. Due to the superior electromechanical behaviors and mechanical reinforcement of PEDOT, the PEDOT/MWCNT@PU mat-based device exhibits a wide working range (0–70 kPa), high sensitivity (1.6 kPa−1), and good mechanical robustness (over 18,000 cycles). The PEDOT/MWCNT@PU mat-based sensor also demonstrates a good linear response to different temperature variations because of the thermoelectricity of the PEDOT/MWCNT composite. This novel strategy for the fabrication of multifunctional fibrous mats provides a promising opportunity for future applications for high-performance wearable devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.