Abstract

TiO2 was grown on both ends of gold nanorods (AuNRs) to form a dumbbell-shaped heterostructure (called AuNRs@end-TiO2) first, and then assembled on the fluorine tin oxide (FTO) electrode surface through hydrophobic interactions to construct a concise photoelectrochemical microRNA-21 (miRNA-21, model target) biosensor using carbon dots (CDs) as photosensitizers. Hairpin probes (HPs) were fixed on the AuNRs@end-TiO2-modified FTO electrode surface through the Au-S bond, and CDs-modified complementary DNA (CDs-cDNA) served as photosensitive probes. In the presence of the target, miRNA hybridized with the HP and triggered double-strand-specific nuclease to cleave the complementary part of the HP with miRNA, and miRNA was released, which can trigger another cycle to realize signal amplification. Many HPs were cleaved and the complementary sequence with cDNA was exposed, which can capture the photosensitive probes to the electrode surface and resulted in photocurrent enhancement. The photocurrent intensity system has a linear relationship with the logarithm of the miRNA concentration in the range of 0.1 fM to 100 pM with a low detection limit of 96 aM (S/N = 3). The biosensor has high sensitivity, good selectivity, and good reproducibility and shows satisfactory results in actual sample detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.