Abstract

AbstractAs a promising electrode material, Ni‐based nanomaterials exhibit a remarkable electrochemical catalytic activity for nonenzymatic glucose sensors. In this paper, Nickel–Iron layered double hydroxide (NiFe‐LDH) film electrode with ultrathin nanosheets and porous nanostructures was synthesized directly on Ni foam (NF) by a one‐step hydrothermal method. The as‐obtained NiFe‐LDH electrode was adopted for glucose detection without further treatment. As an integrated binder‐free electrode for glucose sensor, the NiFe‐LDH/NF hybrid exhibits a superior sensitivity of 3680.2 μA mM−1 cm−2 with a low limit of detection (0.59 μM, S/N=3) as well as fast response time (<1 s). An excellent selectivity from potential interference species such as ascorbic acid, uric acid and Cl− ions and acceptable stability were also achieved. The outstanding performance can be ascribed to the abundant electrochemistry active sites, facilitative diffusion of the electrolyte, high electron transfer rate and reliable stability architecture. Therefore, the NiFe‐LDH nanosheets demonstrate potential application in non‐enzymatic sensory of glucose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call