Abstract
Highly sensitive near-infrared (NIR) organic phototransistors (OPTs) were fabricated using nanowire network based on a narrow bandgap donor-acceptor (D-A) polymer as the photoactive channel. The D-A polymer nanowire network-based NIR-OPTs exhibit high responsivity of ∼246 A/W under an NIR illumination source (850 nm) with a light intensity of ∼0.1 mW/cm2. This value is over one order of magnitude higher than that of the structurally identical planar D-A polymer thin film OPTs. The high performance of the nanowire network-based phototransistors is attributed to the excellent hole transport ability, reduced density of the structural defects in the polymer nanowires, and improved contact at the channel layer/electrode interfaces. The high sensitivity and low cost solution-fabrication process render this OPT technology appealing and practically viable for application in large area NIR sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.