Abstract
Highly sensitive microwave devices that are operational at room temperature are important for high-speed multiplex telecommunications. Quantum devices such as superconducting bolometers possess high performance but work only at low temperature. On the other hand, semiconductor devices, although enabling high-speed operation at room temperature, have poor signal-to-noise ratios. In this regard, the demonstration of a diode based on spin-torque-induced ferromagnetic resonance between nanomagnets represented a promising development, even though the rectification output was too small for applications (1.4 mV mW(-1)). Here we show that by applying d.c. bias currents to nanomagnets while precisely controlling their magnetization-potential profiles, a much greater radiofrequency detection sensitivity of 12,000 mV mW(-1) is achievable at room temperature, exceeding that of semiconductor diode detectors (3,800 mV mW(-1)). Theoretical analysis reveals essential roles for nonlinear ferromagnetic resonance, which enhances the signal-to-noise ratio even at room temperature as the size of the magnets decreases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.