Abstract

Apoptosis plays a crucial role in many biological processes and pathogenesis of various malignancies and diseases of the immune system. In this paper, we described a novel method for sensitive detection of drug-induced apoptosis by using fluorescence correlation spectroscopy (FCS). The principle of this method is based on the assay of DNA fragmentation in the process of the drug-induced apoptosis. FCS is a single molecule method, and it can be used for sensitive and selective assay of DNA fragmentation without separation. We first developed a highly sensitive method for characterization of DNA fragments using a home-built FCS system and SYBR Green I as fluorescent DNA-intercalating dye, and then established a model of drug-induced apoptosis using human pancreatic cancer cells and a drug lidamycin. Furthermore, FCS method established was used to directly detect the fragmentation of DNA extracted from apoptotic cells or in the apoptotic cell lysate. In FCS assay, the single-component model and the multiple-components model were used to fit raw FCS data. The characteristic diffusion time of DNA fragments was used as an important parameter to distinguish the apoptotic status of cells. The obtained data documented that the characteristic diffusion time of DNA fragments from apoptotic cells significantly decreased with an increase of lidamycin concentration, which implied that DNA fragmentation occurred in lidamycin-induced apoptosis. The FCS results are well in line with the data obtained from flow cytometer and gel electrophoresis. Compared to current methods, the method described here is sensitive and simple, and more importantly, our detection volume is less than 1 fL, and the sample requirement can easily be reduced to nL level using a droplets array technology. Therefore, our method probably becomes a high throughput detection platform for early detection of cell apoptosis and screening of apoptosis-based anticancer drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.