Abstract

Oxygen (O2) is a colorless and odorless substance, and is the most important gas in human life and industrial production. In this invited paper, a highly sensitive O2 sensor based on reflector-enhanced photoacoustic spectroscopy (PAS) is reported for the first time. A diode laser emitting at 760 nm was used as the excitation source. The diode laser beam was reflected by the adopted reflector to pass thorough the photoacoustic cell twice and further increase the optical absorption. With such enhanced absorption strategy, compared with the PAS system without the reflector, the reflector-enhanced O2-PAS sensor system had 1.85 times the signal improvement. The minimum detection limit (MDL) of such a reflector-enhanced O2-PAS sensor was experimentally determined to be 0.54%. The concentration response of this sensor was investigated when O2 with a different concentration was used. The obtained results showed it has an excellent linear concentration response. The system stability was analyzed by using Allan variance, which indicated that the MDL for such a reflector-enhanced O2-PAS sensor could be improved to 318 ppm when the integration time of this sensor system is 1560 s. Finally, the O2 concentration on the outside was continuously monitored for 24 h, indicated that this reflector-enhanced O2-PAS sensor system has an excellent measurement ability for actual applications in environmental monitoring, medical diagnostics, and other fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.