Abstract
Small-molecule fluorescent probes in combination with fluorescent microscopy can be a powerful tool to provide real-time detection and high spatiotemporal resolution of transient molecules in cells and bodies. For the design of fluorescent probes for transient molecule imaging, high detection sensitivity is crucial. In this report, two new fluorescent probes, 8-(3,4-diaminophenyl)-4,4-difluoro-4-bora-3a,4a-diaza-di(1,2-dihydro)naphtho[b,g]-s-indacene (DANPBO-H) and 8-(3,4-diaminophenyl)-1,7-dimethyl-4,4-difluoro-4-bora-3a,4a-diaza-di(1,2-dihydro)naphtho[b,g]-s-indacene (DANPBO-M), have been developed for nitric oxide (NO) imaging. The detection sensitivity has been efficiently improved by use of these probes through increasing NO detection signals and decreasing background fluorescence. Fluorescence in the far-red region is enhanced by 400- and 550-fold after reaction with NO is achieved and remains stable for at least 24 h under the irradiation of xenon lamp. Excitation and emission wavelengths longer than 600 nm and excellent intracellular retention of these probes and their NO products create dark background inside and outside cells and tissues. What is more, the excellent intracellular retention of these compounds is obtained by their strong lipophilicity, which is a novel design concept diametrically opposite to the traditional approaches. The high sensitivity and dark background make DANPBO-H and DANPBO-M competitive for NO imaging in cells and tissues. The lipophilicity-based intracellular retention mechanism as a design strategy has great potential in the development of fluorescent probes for bioimaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.