Abstract

One of the most frequently applied techniques to detect nanoparticles in air is analyzing laser light scattering. This technique is very flexible while offering high accuracy and reliability. Yet its functionality highly depends on the sensitivity of the measurement system components. Especially for miniaturized sensor devices with limited space, additional techniques are needed to preserve high intensity of scattered light. In our work we demonstrate a technique using two spherical ring mirrors to identify nanoparticles with diameters below 100 nm in a forward-scattering setup. We succeeded measuring polystyrene particles with diameters of 92 nm with a signal-to-noise-ratio of more than 10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.