Abstract

Hydrazine, a highly toxic compound, is used worldwide in industries as a reducing agent for numerous applications. It has a harmful effect on humans and the environment; therefore, advanced analytical techniques are utilized to monitor hydrazine levels to minimize exposure. In this work, we report the fabrication of vertically oriented ZnO nanosheets based solution-gated field-effect transistor (FET) sensor for the low concentration detection of hydrazine. The ZnO nanosheets between source-drain electrodes were encapsulated with Nafion matrix to enhance stability and selectivity during hydrazine detection. The ZnO nanosheets-based solution-gated FET sensor’s sensing properties are compared with and without different concentrations of hydrazine in buffer solution. Conductance of the solution-gated FET hydrazine sensor showed substantial change upon addition of different concentrations of hydrazine. The fabricated hydrazine sensor exhibits high sensitivity (12150 μA μM−1 cm−2) in the linear response range of 5–110 nM. The low detection limit (∼1.2 nM; signal-to-noise (S/N) ratio of 3), high sensitivity, stability, and reproducibility are due to the direct growth of nanosheets that provide the controlled morphology and enhanced surface area. Besides, solution-gated FET hydrazine sensor was successfully applied to detect hydrazine in water samples for practical validation of developed hydrazine sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call