Abstract
We report highly sensitive Fourier-transform coherent anti-Stokes Raman scattering spectroscopy enabled by genetic algorithm (GA) pulse shaping for adaptive dispersion compensation. We show that the non-resonant four-wave mixing signal from water can be used as a fitness indicator for successful GA training. This method allows GA adaptation to sample measurement conditions and offers significantly improved performance compared to training using second-harmonic generation from a nonlinear crystal in place of the sample. Results include a 3× improvement to peak signal-to-noise ratio for 2-propanol measurement, as well as a 10× improvement to peak intensities from the high-throughput measurement of polystyrene microbeads under flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.