Abstract

Plant diseases caused by tobacco mosaic viruses (TMV) reduce the yield and quality of crops and cause significant losses. Early detection and prevention of TMV has important value of research and reality. Herein, a fluorescent biosensor was constructed for highly sensitive detection of TMV RNA (tRNA) based on the principle of base complementary pairing, polysaccharides and atom transfer radical polymerization by electron transfer activated regeneration catalysts (ARGET ATRP) as double signal amplification strategy. The 5′-end sulfhydrylated hairpin capture probe (hDNA) was first immobilized on amino magnetic beads (MBs) by a cross-linking agent, which specifically recognizes tRNA. Then, chitosan binds to BIBB, providing numerous active sites for fluorescent monomer polymerization, which successfully significantly amplifying the fluorescent signal. Under optimal experimental conditions, the proposed fluorescent biosensor for the detection of tRNA has a wide detection range from 0.1 pM to 10 nM (R2 = 0.998) with a limit of detection (LOD) as low as 1.14 fM. In addition, the fluorescent biosensor showed satisfactory applicability for the qualitative and quantitative analysis of tRNA in real samples, thereby demonstrating the potential in the field of viral RNA detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call