Abstract

Flexible pressure sensors have attracted increasing research interest because of their potential applications for wearable sensing devices. Herein, a highly sensitive flexible pressure sensor is exhibited based on the elastomeric electrodes and a microarray architecture. Polydimethylsiloxane (PDMS) substrate, coated with silver nanowires (AgNWs), is used as the top electrode, while polyvinylidene fluoride (PVDF) as the dielectric layer. Several transfer processes are applied on seeking facile strategy for the preparation of the bottom electrode via embedding AgNWs into the PDMS film of microarray structure. The flexible pressure sensor integrates the top electrode, dielectric layer, and microarray electrode in a sandwich structure. It is demonstrated that such sensors possess the superiorities of high sensitivity (2.94 kPa-1), low detection limit (<3 Pa), short response time (<50 ms), excellent flexibility, and long-term cycle stability. This simple process for preparing such sensors can also be easily scaled up to construct pressure sensor arrays for detecting the intensity and distribution of the loaded pressure. In addition, this flexible pressure sensor exhibits good performance even in a noncontact way, such as detecting voice vibrations and air flow. Due to its superior performance, this designed flexible pressure sensor demonstrates promising potential in the application of electronic skins, as well as wearable healthcare monitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call