Abstract

Ethylene glycol, as a colorless and tasteless organic compound, is an important industrial raw material but can be hazardous to the environment and human health. Thus, the development of high-performance sensing materials is required for the monitoring of ethylene glycol. In this paper, a method to synthesize In2O3@ZnO using MIL-68(In)@ZIF-8 to serve as a sacrificial template is proposed for testing ethylene glycol sensing capabilities. For verifying an effective improvement in gas-sensitive performance by bimetallic organic skeleton (MOF) synthesized heterojunctions, we performed gas-sensitive tests on In2O3, ZnO, and In2O3@ZnO. In2O3@ZnO has the best sensitivity to ethylene glycol, including ultrahigh response value (20 ppm-200.12), moderate response/recovery time (53/50 s), and excellent selectivity. The construction of heterojunction is the main reason for enhancing the ethylene glycol response of the sensor. On this basis, the gas-sensitive enhancement mechanism of composites is analyzed. The results show that the design method of synthesizing heterojunctions using bis-MOFs proposes a new approach that enhances the properties of ethylene glycol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.