Abstract

Semiconducting, two-dimensional molybdenum disulfide (MoS2) is considered a promising new material for highly sensitive photodetection, because of its atomically thin profile and favorable bandgap. However, reported photodetectors to date show strong variation in performance due to the detrimental and uncontrollable effects of environmental adsorbates on devices due to large surface to volume ratio. Here, we report on highly stable and high-performance monolayer and bilayer MoS2 photodetectors encapsulated with atomic layer deposited hafnium oxide. The protected devices show enhanced electronic properties by isolating them from the ambience as strong n-type doping, vanishing hysteresis, and reduced device resistance. By controlling the gate voltage the responsivity and temporal response can be tuned by several orders of magnitude with R ∼ 10-10(4) A/W and t ∼ 10 ms to 10 s. At strong negative gate voltage, the detector is operated at higher speed and simultaneously exhibits a low-bound, record sensitivity of D* ≥ 7.7 × 10(11) Jones. Our results lead the way for future application of ultrathin, flexible, and high-performance MoS2 detectors and prompt for further investigation in encapsulated transition metal dichalcogenide optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.